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Abstract 

The online social media has experienced vigorous evolution. Diversified needs of information acquisition and retrieval on social media 

platforms have been evoked by massive users. While all sorts of application demands meet with explosive data growth, the development of 

effective methodologies has become emergent. By taking full advantage of rich context, we propose a heterogeneous object relation matrix 

completion approach (EBMC) which jointly complements the relationship between the heterogeneous data objects. Specifically, we detect 

the Place-of-Interest (POI) with mean shift algorithm on the GPS information of the social image collection. Then, a batch matrix completion 

and learning method is developed by optimizing a unified objective function to learn the POI-specific user-image, image-tag and user-tag 

relationships. Finally, we decompose the whole learning problem into a set of POI-specific subtasks, which corresponding to the relation 

data blocks separated by the POI structure. Through experiments on tasks of image annotation and user retrieval based on image similarity 

of real-world social media datasets, we found that our proposed method achieved good performance. 
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1. Introduction 

 

On interactive Online Social Media, active users produce massive user-generated content (UGC) with rich attributes and social 

connections every second. The connection between heterogeneous data objects has become more complicated. In fact, users 

have raised a variety of information acquisition requirements. While all sorts of application demands meet with explosive data 

growth, it is impossible to promote the sharing and dissemination of knowledge due to the lack of technology to model the 

relationship between heterogeneous data objects. Thus, it is necessary to develop an effective method to solve the retrieval 

problem of heterogeneous data objects. 

 

Matrix completion [1-2] has been hot research issue in a variety of research fields such as data mining, machine learning 

and information retrieval. We review some of recent works from methodology and application perspectives. The matrix 

completion problem has been recognized and modeled as a low-rank matrix factorization problem [1-2]. Following this 

direction, fruitful achievement has been made in the past decade. Moreover, research endeavors have also enhanced the 

learning ability of matrix completion. For example, inductive matrix completion [3] has also been proposed in recent years as 

a new way to deal with out-of-sample relation completion under matrix completion framework. 

 

We explore the relationships among three important types of objects from rich social context. Specifically, the user-

image relationship reflects the users' attachment to the images, the image-tag relation indicates the social tagging distribution 

on a different visual content, and the user-tag relationship represents the user behavior and inclination in the tagging activities. 

Due to the complexity of unpredictable user behavior [4], this object relationship is noisy, and observations are sparse. We 

jointly complement the intrinsic relationships between objects from multiple observed relationships. By considering visual 

content as the centric component, we design several pairwise relationship constraints to describe heterogeneous object 

relationships based on assumptions from different perspectives. Compared with other relationship-specific learning models, 
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the object relationships can be inferred to be more reliable [5-6] but needs to be learned about more thoroughly. 

 

The rich social environment of heterogeneous objects can be used to deal with the object-relational learning tasks. It is 

reasonable to constrain the matrix completion task with respect to the Place of Interests (POI) [7-8]. We learn the POI-specific 

matrix blocks from different observed relationship matrices within a unified objective function, where the information 

averaging is performed within an appropriate POI-specific range. Our model captures more informative relationship patterns 

among heterogeneous objects in rich context and the learned relationships are naturally interpretable; thus, it better fits to the 

information acquisition demands in heterogeneous data object retrieval. On the other hand, by decomposing the tasks into 

POI-specific relationship block matrix completion sub-tasks, we gain reduced memory cost and improved computational 

efficiency. The model optimization is well-established in batch learning style. At the same time, the alternate sub-gradient 

descent algorithm can effectively solve the problem of learning POI specific relation matrix blocks in alternate optimization 

mode. Therefore, our model can be scaled towards large scale object relationship matrix completion. 

 

By taking full advantage of the rich social context, we propose an efficient block matrix completion model (EBMC) 

which jointly learns the completed relationships among heterogeneous objects. The relationship matrix completion can be 

efficiently performed in a block-wise batch learning style. Through experiments on automatic image annotation and image-

based user retrieval in object retrieval tasks on real-world social media datasets, we found that our proposed method achieved 

good performance. 

 

The contributions are summarized as follows. 

 

• We propose a novel joint block matrix completion framework which exploits multiple object relationships and rich 

social context to perform information averaging within an appropriate POI-specific range. 

• Our method is more scalable in relationship learning and completion compared to existing tag refinement, completion 

and prediction approaches [6] using only the image-tag relationship and recommendation models [8-9] and the user-

item relationship. 

• Our model may gain an improved computational efficiency since the model optimization can be easily parallelized. 

 

2. Approach 

 

2.1. Notations and Preliminaries 

 

Given a social image collection with multiple data object types including manually labeled tags, GPS locations and their 

associated users, the problem we try to solve is how to complement the missing entries in the relation matrix and reduce the 

amount of noisy entries in three pairwise object relationship matrices: user-image, image-tag and user-tag. We use n  to 

represent the amount of images provided by l  users, and m  to represent the number of unique tags in the dataset. The 

three original observed relationship matrices are denoted as: 

 

1) User-Image Matrix:  0,1ˆ l n
X


  denotes the observed binary user-image matrix that encodes how users are 

associated with images (e.g., ownership, comment, retweet), where ˆ
riX  is 1 if image i  belongs to user r ; otherwise ˆ

riX  

is 0. After a simple permutation, the user-image matrix can be rewritten as: 

 

 ˆ
0

=
0

l s n s

SI
X

C −  − 
 
 

 (1) 

 

Where  0,1
l s n s

C
−  −

  is the observed binary matrix which indicates certain ownership between n s−  images and 

l s−  users. sI  is an identity matrix in correspondence with s  images of anonymous users. Incorporating anonymous users 

in X̂  enables our method to deal with relationship learning on newly uploaded social images. 

 

2) Image-Tag Matrix:  0,1
n m

T


 , where ˆ
ijT  is 1 if tag j  is associated with image i ; otherwise ˆ

ijT  is 0. With T̂ , 

the tags of an image provide some weak labels on the diversified visual content. 
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3) User-Tag Matrix: ˆ l mU R   is the matrix that encode the observed user-tag relation. 
1

rj ij

in

U T
r

 

=  , if image i  

belongs to user r  and nr  denotes the number of user 'r s  images. Each row of this matrix can be regarded as a 

normalized histogram of tags for a single user. 

 

The goal of our study is to obtain 
l mX R  , R n mT   and R l mU   by completing the original observed matrices 

ˆ ˆ,X T and Û jointly. The element riX  in X  reveals the probability of associating image i  to user r , which represents 

the preference level of user r on image i . We use the feature output of the 5th convolution layer the deep CNN [10] trained on 

ILSVRC 2012 dataset to represent the visual characteristics of the images. We denote 
n dV R   as the visual feature matrix 

where the 
thi  row corresponds to the d -dim feature of image i . 

 

2.2. POI Detection for Matrix Partition 

 

A large number of images make the relationship matrices T ,U and X very large, which is prohibitive to model them together. 

We have found that geographically adjacent images show similar visual content and semantic information more likely, which 

indicates the occurrence of a potential Point of Interests (POI). To detect POI from the dataset, we use mean shift on the GPS 

information (latitudes and longitudes) of social images. With POI detection, we partition all relationship matrices into a set of 

sub-matrices according to POIs. Then, we obtain the corresponding data block of each POI. 

 

2.3. EMBC 

 

We represent the index of POI by k . The notations with k  refer to data block with respect to the
thk  POI. We consider the 

following types of constraint terms for the three relationship matrices. 

 

1) User Related Constraint: For all of the images uploaded by the same user in the same POI, they tend to be assigned 

the same tags. To formulate the user-wise coherence of users' tagging behavior in single POI, we measure the element-wise 

difference between k kU U  and k k k kX T T X  with F-norm. We define a user related loss term as 
2

k FF‖ ‖ , where: 

 

 k k k k k k kF X T T X U U= −  (2) 

 

As shown in [11], two images sharing more common tags tend to have higher semantic similarity beyond tags. Besides 

user-wise similarity, the tag-wise similarity which reflects tag co-occurrence should also be consistent, since images attached 

to the same user share its tagging behavior in single POI. Accordingly, we minimize the constraint term 
2

k FH‖ ‖  reflecting 

the tag-wise difference between images 
k kT T  and users 

k kU U  in F-norm as: 

 

 k k k k kH T T U U= −  (3) 

 

2) Tag Correlation Constraint: Similar as k kT T , the tag-wise similarity for the original image-tag sub-matrix is 

calculated as ˆ ˆ
k kT T .To enforce the tag co-occurrence consistency structure on kT before and after the model learning, we 

define the term to minimize the element-wise difference between k kT T  and ˆ ˆ
k kT T , denoted as 

2

k FK‖ ‖ , where  

 

 ˆ ˆ
k k k k kK T T T T= −  (4) 

 

3) Visual Content Related Constraint: The visual features and tags usually have intrinsic consistent relationship. 

Enforcing such consistency may be beneficial to image-tag matrix completion [6, 12]. To enhance the semantic consistency 

between visual features and tags, we penalize the difference between similarities in visual feature space and textual semantic 

label space with an F-norm 
2

k k k k FT T V V−‖ ‖ . 

 

Considering the widely accepted fact that low-level visual features are less capable than tags for semantic labels of a 

given image, we introduce a feature mapping matrix 
d mW R   to reduce the semantic inconsistency between the two 
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matrices. It can directly map the visual feature into semantic tag space. Such a term can be rewritten as: 

 

 k k k k kG T T V WW V= −  (5) 

 

4) Regularization: To avoid overly dense solution of the learned relation matrices, it is required that only a small number 

of kT  and kU  entries should be non-zero, . .i e , a small number of unique tags can be attached to each image or user. For 

kX , we require a small number of images to be associated with given user. Inspired by existing sparse coding frameworks 

[13-14], we introduce an 1l -norm term 1 1 1k k kT U X+ +‖ ‖ ‖ ‖ ‖ ‖  to derive the sparse solution of matrices kT , kU and 

kX . For the shared mapping matrixW  , we also add an 1l -norm to achieve the sparse solution. 

 

5) Overall Lost Function: By jointly considering all of these criteria, we formulate the whole problem as follows: 

 

 11
, , ,

arg min
k k k

p

kk
X T U W

W
=

+ ‖ ‖  (6) 

 

 2 2 2 2

1 1 1) (k k F k F k F k F k k kF G H K T U X    = + + + + + +‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  (7) 

 

Where , , , , , 0       are parameters and they can be tuned with cross-validation. 

 

3. Optimization 

 

We use ,  k kX T  and kU  for POI k  as an example to show the technical details of our proposed algorithm. The 

optimization problem of Equation (6) is to alternately optimize each data object matrices. It is non-convex due to the non-

quadric terms in Equation (7). We apply sub-gradient descent for nonconvex optimization. During the optimization, it is likely 

to obtain dense intermediate values of , , , {1, , }t t t

k k kX T U k p if we directly apply alternating sub-gradient descent on the 

problem. This may lead to a significantly increase on the computational time cost at each iteration. To avoid this unexpected 

condition, we propose to decompose Equation (6) into two parts according to the composite function optimization in [6]. 

Accordingly, we formulate an auxiliary loss function: 

 

 
2 2 2 2

k k F k F k F k FA F G H K   = + + +‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  (8) 

 

The sub-gradients of Equation (8) with respect to each relationship sub-matrix are formulated as: 

 

 2
kX k k k k kA F X T T =  (9) 

 

 2 2 2 2
kT k k k k k k k k k k kA X F X T G T T H T K    = + + +  (10) 

 

 2 2
kU k k k k kA F U U H  = +  (11) 

 

The sub-gradients with regards to W are: 

 

 
1

2 ( )
p

W k k k kk
A V G V W

=
 = −   (12) 

 

Based on the above setting, we compute intermediate solutions of each matrix from t  to 1t +  step with respect to the 

auxiliary loss function as ( { , , , })k k kS T U X W : 

 

 
1

t

t t

t kS
S S A+ = −   (13) 

 

t  denotes the step size. Then we formulate the auxiliary optimization problems for each model parameter matrix as 

follows ( { , , }k k kS T U X  and  = , or S W=  and = ): 
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1 1 2

1

1
arg min

2

t t

F t
S

S S S S+ += − +‖ ‖ ‖ ‖  (14) 

 

We obtain the new updated solutions for auxiliary problems as: 

 

 
1 1max( , )t t

tS S + += −0  (15) 

 

Each variable in{ , , , }k k kT U X W  is alternatively updated during the 
tht  iteration. Since the images and their related 

ontologies are divided into different POIs, we conduct the optimization procedure in parallel on each POI-specific data block. 

For ,k kT U and kX of POI k , to achieve correct calculation results and reduce the complexity, W is shared by all kV  in the 

parallel optimization process.  

 

4. Dataset Description and Experiment Settings 

 

We evaluate the performance on image annotation and image-based user retrieval. The experiment selects two Flickr datasets, 

London and New York, to evaluate the performance on image annotation and image-based user retrieval. London contains 

771,099 GPS located images, annotated by more than 100,000 tags uploaded by 16,225 users. New York contains 732,555 

images with GPS information uploaded by 15,344 users. Due to the imbalance of the tag distribution between the images, 

most tags belong to only a few images [15]. The tags are ranked according to the number of annotated images, and the top 

1000 are selected as experimental words. We construct both London and New York databases by geographic filtering of the 

social image data set YFCC100M. 

 

As the geography expands, fix the bandwidth parameter h  in Equation MS to 0.005 to achieve better POI detection [7]. 

In our experiments, we set the bandwidth parameter corresponding to 500 meters. The feature mapping matrix W is initialized 

as identity matrix. Divide 90% of the images in the data set as the training set, and the rest 10% as the test set to obtain T  

and X . We repeat the same experiment 5 times; use the average result as the final index to evaluate the performance of the 

algorithm. The cross-validation result determines that 100,  1,  1,  1,  1    = = = = = , 1 =  and 0 =
710−

.  

 

We evaluate the performance on image annotation and image-based user retrieval with the following relevant algorithms: 

TMC [6], LSR [12], TagProp [16], CMC [7], EBMC: our method without tag-wise constraint terms ( 0, 0 = =  in Equation 

7), NMF: the baseline method in IBUR [17]. 

 

4.1. Image Annotation  

 

Given a query image q  in T , we rank all the tags in descending order of their probability values attached to image q . We 

change the number of initial training tags e from{2, 4,6,8,10} . Suppose image i  has im  manually annotated tags, where 

im  is the non-zero entries of the ith row of T̂ . If ie m , select e  tags as the initial annotation. If ie m , delete image i  

from the training set. We use the Mean Average Precision (MAP) of TOP K  ( {5, 20}K  ) for a different number of 

completed tags (denoted as MAP@5and MAP@20) to evaluate the algorithm performance. 
 

Figure 1 shows some annotated results in the setting of 6e = . EBMC can predict tags with higher accuracy and more 

accurate meanings, while tags predicted by other approaches are usually wrong or with repeated meaning. As shown in Table 1, 

the accuracy goes up with the increase of the amount of initially observed tags for all compared methods. In fact, more 

observed tags for the image dataset provides richer relationship information. We observe that EBMC outperforms other 

methods because POI-based partition makes geographical local consistency more compact in tag space. The prior knowledge 

on user tagging behavior in a POI is effective for image annotation. 

 

4.2. Image-based User Retrieval 

 

Image-based user retrieval is an application scenario when an online user with a query image searches possible users. Given 

the query q , we rank all the users in descending order according their similarity scores to image q , corresponding to the 

q th column of X . For each query in the test set, we expect the position of its uploading user in the ranking list to be the top. 

Since X̂ contains an identity sub-matrix sI  for testing images attached to anonymous users, we set the corresponding 
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diagonal entries in X  to zero. We use Mean Reciprocal Rank (MRR) as 
| |

1

1 1

| |

Q

q
q

MRR
Q Rank=

=  , where Q  is the testing 

set and 
qRank  is the position of uploading user of query image q  in the q th column of X . A higher MRR score indicates 

better retrieval result, where the true original user is ranked at top positions. We record the maximum and average MRR score 

among all POIs. 

 

 
Figure 1. Examples of annotation results. Tags in red denotes the wrongly predicted ones, those in green denotes tags with repeated meaning, and those in 

purple denotes novel but correct tags compared to the ground truth 
 

Table 1. MAP performance of automatic image annotation  

New York MAP@5 

Method NMF TMC  LSR TagProp CMC EBMCT EBMC 

e = 2 63.12 76.16 75.88 75.02 76.43 77.75 77.70 

e = 4 65.24 76.81 76.99 75.73 77.25 78.33 78.70 

e = 6 66.17 77.10 77.56 75.75 77.59 78.61 78.67 

e = 8 66.98 77.34 78.21 76.78 77.71 78.81 78.93 

e = 10 67.22 77.79 78.87 77.40 78.05 79.10 79.49 

London MAP@5 

Method NMF TMC  LSR TagProp CMC EBMCT EBMC 

e = 2 72.44 81.36 78.57 78.90 84.58 89.06 89.13 

e = 4 73.16 82.41 79.76 79.46 84.97 89.10 89.24 

e = 6 74.03 82.44 81.07 79.57 85.21 88.98 89.13 

e = 8 74.78 83.17 82.63 79.90 85.34 89.02 89.36 

e = 10 75.29 84.37 84.48 80.23 85.68 89.09 89.39 

 

Table 2 shows the Maximum MRR (MaxMRR) and Average MRR(AveMRR) scores of different methods on London 

and New York. All of the candidate methods except EBMC and EBMCT have the same scores as the baseline NMF, which 

means they have little improvement over baseline method on this task. At the same time, the Maximum MRR scores on both 

EBMC and EBMCT are eleven times larger than the baseline NMF method. This experimental phenomenon demonstrates that 

both kF  and kG  are indispensable in image-based user retrieval task. Both the visual contents and tags play important roles 

in sharing high-level semantic information with users. 

 

Findings and discussions. In Table 2, we observe a significant difference between MRR scores of New York and London. 

Similar observation should also be noticed in image annotation experiment (Table 1), where the performance gap between 

EBMC and TMC in London is much larger than it in New York. It clearly reveals that the #image per user has positive 

correlation with the MRR scores when comparing two datasets. In the top 10 popular POIs, the uploaded images in New York 

are mostly contributed by a small number of active users. However, the uploaded images in the top 10 popular POIs in London 

are more scattered, and the active users tend to upload less images on the site of the top 10 POIs than the active users in New 

York. Based on this finding, we see that compared with baseline NMF techniques, the model capacity of our proposed method 

will be fully released to capture the relationships between heterogeneous data objects when the user-image relationship is 
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denser or more concentrated. 

 
Table 2. MRR performance of image-based user retrieval (in %)  

New York MaxMRR AveMRR 

Mthod NMF CMC EBMCT EBMC NMF CMC EBMCT EBMC 

e = 2 2.57 31.3 55.31 55.45 1.12 10.31 19.37 19.77 

e = 4 3.46 64.6 55.99 56.02 1.48 11.04 20.25 20.36 

e = 6 3.85 36.7 56.15 56.20 1.73 11.93 20.64 20.83 

e = 8 4.12 38.1 56.58 56.78 1.99 12.65 21.12 21.43 

e = 10 4.89 39.4 56.61 56.89 2.17 13.02 21.63 21.97 

London MaxMRR AveMRR 

Mthod NMF CMC EBMCT EBMC NMF CMC EBMCT EBMC 

e = 2 0.72 14.53 22.76 22.83 0.39 7.68 10.39 11.64 

e = 4 1.56 15.07 22.85 26.04 0.88 7.91 12.86 13.40 

e = 6 2.07 15.89 30.64 31.41 1.31 8.04 14.37 15.57 

e = 8 2.38 16.34 32.73 35.79 1.69 8.56 15.99 16.61 

e = 10 2.95 16.58 34.71 35.79 1.88 8.75 16.05 17.76 

 

4.3. Parameter Sensitivity Analysis 

 

To evaluate the sensitivity of the parameters New York dataset, the experiment sets three significant parameters { , , }    

for reflecting the MAP5, MAP20, and the average MRR (AMRR) scores. Fix other parameters as the original value 

( 100, 1, 1  = = = ) for each parameter; ,  and   range from 
310−

 to 
310 . In Figure 2(a), the MAP scores are stable 

in a wide range of except for 1000 = , and the shape of the AMRR curve shows a trend from rise to decline. It can be seen 

that  is sensible in IBUR. Thus, set 100 as the optimal value for  to balance the performance of image annotation and 

image-based user retrieval. From Figure 2(b), the trend of average MRR score increases with the increment of   , and all 

three indicators tend to stabilize in the case of 1  . There is a clear performance trade-off between the average MRR and 

MAP20 scores observed, which indicates that different values of   balance weights of different relationships among 

heterogenous objects. Thus, set   with an optimal value of 1. All of the curves in Figure 2(c) keep stable except a small 

ascent from 100 =  to 1000 = . We determine 1 as the optimal value for   through experiments to make our model 

more flexible. 

 

   
(a) α (b) β (b) θ 

Figure 2. Sensitivity analysis of α, β, θ in terms of MAP@5, MAP@20 and AveMRR on the New York dataset 

 

Space Complexity. The memory scale of TMC, LSR and NMF is ( )O n m . TagProp relies on KN, so its memory 

consumption is ( )O n K . The memory consumption of EBMC is max( )O n m , where maxn is the number of images in the 

largest POI. Typically, 5m K and max10n n . Our method achieves the smallest space requirement compared to others. 

 

5. Conclusion 

 

This paper proposes an efficient block matrix completion method, EBMC, which jointly factorizes the relationships among 

different ontologies in a distributed optimization manner. We decompose the whole learning problem into a set of POI-specific 

subtasks, which corresponding to the relation data blocks separated by the POI structure. Through experiments on automatic 

image annotation and image-based user retrieval in object retrieval tasks on real-world social media datasets, we found that 

our proposed method achieved good performance. In future work, we will study the connections between users and locations 

to form a more flexible relationship modeling framework. 
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